

DPP – 2 (Magnetism & Matter)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/74

Video Solution on YouTube:-

https://youtu.be/BBdrwh3cjko

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/56

- Q 1. Earth's magnetic field always has a horizontal component except at or Horizontal component of earth's magnetic field remains zero at
 (a) Equator
 (b) Magnetic poles
 (c) A latitude of 60°
 (d) An altitude of 60°
- Q 2. The correct relation is (a) $B = \frac{B_H}{B_V}$

(c)
$$B = \sqrt{B_H^2 + B_V^2}$$

(b) B = $B_H \times B_V$ (d) B = $B_H + B_V$

(Where B_H = Horizontal component of earth's magnetic field, B_V = Vertical component of earth's magnetic field and B = Total intensity of earth's magnetic field)

- Q 3. At a certain place, the horizontal component of earth's magnetic field is $\frac{1}{\sqrt{3}}$ times of its vertical component. The angle of dip at that place is (a) 30° (b) 45° (c) 75° (d) 60°
- Q 4. The earth's magnetic field at a certain place has a horizontal component 0.3 Gauss and the total strength 0.5 Gauss. The angle of dip is:

(a) $\tan^{-1}\frac{3}{4}$	0	CIII	(b) $\sin^{-1}\frac{3}{4}$
(c) $\tan^{-1}\frac{4}{3}$	N	S	(d) $\sin^{-1}\frac{3}{5}$

- Q 5. A magnetic needle (free to rotate in any direction) will show which one of the following directions at the earth's magnetic pole
 - (a) Vertical
 - (b) No particular direction
 - (c) Bent at 45° to the vertical
 - (d) Horizontal
- Q 6. A short magnet of moment 6.75 Am^2 produces a neutral point on its axis. If horizontal component of earth's magnetic field is $5 \times 10^{-5} Wb/m^2$, then the distance of the neutral point from center of magnet should be (a) 10 cm (b) 20 cm
 - (c) 30 cm (d) 40 cm

- Q 7. At a given place on earth's surface the horizontal component of earths magnetic field is 2×10^{-5} T and resultant magnetic field is 4×10^{-5} T. The angles of dip at this place is:
 - (a) 30° (b) 60° (c) 90° (d) 45°
- Q 8. The true value of angle of dip at a place is 60° , the apparent dip in a plane inclined at an angle of 30° with magnetic meridian is

(a) $\tan^{-1}\left(\frac{1}{2}\right)$	(b) $\tan^{-1}(2)$	
(c) $\tan^{-1}\left(\frac{2}{3}\right)$	(d) None of these	

- Q 9. The true dip at a place is 30° . What is the apparent dip when the dip circle is turned 60° out of the magnetic meridian ?
 - (a) $\tan^{-1}\left(\frac{1}{\sqrt{6}}\right)$ (b) $\tan^{-1}\left(\frac{\sqrt{3}}{2}\right)$ (c) $\tan^{-1}\left(\frac{2}{\sqrt{3}}\right)$ (d) None of these
- Q 10. If a dip circle is placed in a vertical plane at an angle of 30° to the magnetic meridian, the dip needle makes an angle of 45° with the horizontal. The real dip at that place is?
 - (a) $\tan^{-1}\left(\frac{2}{3}\right)$ (b) $\tan^{-1}\left(\frac{\sqrt{3}}{2}\right)$ (c) $\tan^{-1}\left(\frac{2}{\sqrt{3}}\right)$ (d) $\tan^{-1}\left(\frac{\sqrt{3}}{\sqrt{2}}\right)$
- Q 11. At a certain place a magnet makes 30 oscillations per minute. At another place where the magnetic field is double, its time period will be

a) 4 sec
(b) 2 sec
(c)
$$\frac{1}{2}$$
 sec
(d) $\sqrt{2}$ sec

Q 12. If the strength of the magnetic field is increased by 21%, the frequency of a magnetic needle oscillating in that field:

(a) Increases by 10%	\cup	(b) Decreases by 10%
(c) Increases by 11%		(d) Decreases by 11%

- Q 13. A magnetic needle of magnetic moment $6.7 \times 10^{-2} Am^2$ and moment of inertia $7.5 \times 10^{-6} kg m^2$ is performing simple harmonic oscillations in a magnetic field of 0.01T. Time taken for 10 complete oscillations is : (a) 7.76 s (b) 6.65 s (c) 8.89 s (d) 9.98 s
- Q 14. Time period for a magnet is T. If it is divided in four equal parts along its axis and perpendicular to its axis as shown then time period for each part will be

- Q 15. Two bar magnets of the same mass, length and breadth but magnetic moments M and 2M respectively, when jointed in same position (Similar pole in same direction), time period is 3 sec. What will be the time period when they are placed in different position (Similar pole in opposite direction) :
 - (a) $\sqrt{3}$ sec
 - (c) 3 sec

- (b) $3\sqrt{3}$ sec (d) 6 sec
- Q 16. A dip needle in a vertical plane perpendicular to the magnetic meridian will remain-(a) Vertical
 - (b) Horizontal
 - (c) In any direction
 - (d) Inclined at 45° with horizontal
- Q 17. When a magnet is placed vertical then the number of neutral point obtained in the plane of paper is-(a) 1 (b) 2 (c) 4 (d) 3
- Q 18. The magnetic needle of a tangent galvanometer is deflected at an angle 30°. The horizontal component of earth's magnetic field 0.34×10^{-4} T is along the plane of the coil. The magnetic field of coil-
 - (a) 1.96×10^{-4} T

(c) 1.96×10^4 T

(b) 1.96×10^{-5} T (d) 1.96×10^{5} T

Answer Key

Q.1 b	Q.2 c	Q.3 d	Q.4 c	Q.5 a
Q.6 c	Q.7 b	Q.8 b	Q.9 c	Q.10 b
Q.11 d	Q.12 a	Q.13 b	Q.14 c	Q.15 b
Q.16 a	Q.17 a	Q.18 b		

Use code PHYSICSLIVE to get 10% OFF on Unacademy PLUS and learn from India's Top Faculties.

PHYSICS

ICONIC ** PLUS ⊘ India's Best Educators ⊘ Interactive Live Classes Structured Courses & PDFs C Live Tests & Quizzes Personal Coach × Study Planner 24 months ₹2,100/mo > +10% OFF ₹50.400 No cost EMI 18 months ₹2,363/mo > No cost EMI +10% OFF ₹42,525 ₹2,888/mo 12 months > +10% OFF ₹34,650 No cost EMI 6 months ₹4,200/mo > +10% OFF ₹25,200 No cost EMI To be paid as a one-time payment View all plans Awesome! PHYSICSLIVE code applied X

Written Solution

DPP-2 :Magnetism- Earth Magnetism & Oscillations of Magnet in magnetic field By Physicsaholics Team

Horizontal component of Easth's magnetic $B_{H} = B(s_{0}) = B_{0} = Angle of Dir$ $B(s_{0}=0) = (c_{0}=0) = 0 = 0$ Solution: 1 Dive ong 50', Bn=0 ; at රුර Pole anona end

Hield

Solution: 4 By= BCSO By= BSiNO fano $\mathcal{C}_{\mathcal{V}}$ -BM BM + DZ ß wood Jom 1200 angs 3 003 >Ang. 0=

At poles magnetic field is perpendicular to the surface of earth. Hence, a compass needle will show in vertical direction at the earth's magnetic pole. Solution: 6 at Neutonal Point magnetic field due = magnetic field to magnet = due to Ear ×103 Mo x 2M An x x3 33×(101)3 20 3 × 101 × 6-75 = 0.3m 3000 8= XIO ×10

Ans. c

Ans. d

Solution: 13
Time period of oscillations
$$T = 2n$$
 \int_{MR}^{T}
 $T = 2n$ $\int_{G-4 \times 10^{-2} \times 0.00}^{7.5 \times 10^{-2}} = 2n$ $N = 10^{-2}$ $N = 10^{-2}$
 $T = 2n$ $\int_{G-7}^{7.5} \times 10^{-1} = 1065 \times 10^{-1}$ see CS
Time taken for 10 complete oscillations = 10T
 $PR = 10 \times 6.65 \times 10^{-1}$
 $PR = 10 \times 6.65 \times 10^{-1}$
 $PR = 10 \times 6.65 \times 10^{-1}$
 $PR = 10 \times 10^{-1}$
 $PR = 10 \times 10^{-1}$
 $PR = 10^{-1}$

These 18 no horizontal Component of Field perpendicular to magnetic meridion Somet plane 18 in Vertical direction. Vertical di > needle indication

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/74

Video Solution on YouTube:-

https://youtu.be/BBdrwh3cjko

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/56

CLICK

